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LHCb goals 
n  Find or establish limits on physics beyond the 

standard model using CP violating & rare 
beauty & charm decays 

n  Rare: B(s)→µ+µ-, B0→K*µ+µ-, B-→Kµ+µ-/Ke+e-

n  CP violation: determine ∠’s: γ, β, φs 
q  Use B(s)→J/ψK+K-, J/ψπ+π- decays 
q  φs measured with Bs→J/ψφ & J/ψπ+π- decays 
q  Penguin pollution limited using B0→J/ψρ0 decays 

n  Study of B0→J/ψK+K-, turned not to be that 
interesting [arXiv:1308.5916] but 
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n  First looked for in LHCb as 
a potential background for 
B0→J/ψK+K-  

n  Large signal found, used 
for Λb lifetime [arXiv:1402.6242] 

n  Dalitz plot 
 showed an  
 unusual  
 feature 
  [arXiv:1507.03414] 

  

Λb→J/ψK-p  
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Projections 
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Why pentaquarks? 
n  Interest in pentaquarks arises from the fact that 

they would be new states of matter beyond the 
simple quark-model picture. Could teach us a lot 
about QCD. 

n  There is no reason they should not exist 
q  Predicted by Gell-Mann (64), Zweig (64), others later 

in context of specific QCD models: Jaffe (76), 
Högaasen & Sorba (78), Strottman (79)  

n  These would be short-lived ~10-23 s 
“resonances” whose presence is detected by 
mass peaks & angular distributions showing the 
presence of unique JP quantum numbers 
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Prejudices  
n  No convincing states 51 years after Gell-mann & 

Zweig proposed qqq and qqqqq baryonic states 
n  Previous “observations” of several pentaquark 

states have been refuted 
n  These included 

q  Θ+→K0p, K+n, mass=1.54 GeV, Γ~10 MeV 
q  Resonance in D*-p at 3.10 GeV, Γ=12 MeV 
q  Ξ--→Ξ-π-, mass=1.862 GeV, Γ<18 MeV 

n  Generally they were found/debunked by looking 
for “bumps” in mass spectra circa 2004 [see Hicks 
Eur. Phys. J. H37 (2012) 1.] 
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Decay amplitude analysis 
n  Are there “artifacts” that can produce a peak? 

q  Many checks done that shows this is not the case: 
e.g. changing p to K, or π to K allows us to veto 
misidentified Bs→J/ψK-K+ & B0→J/ψK-π+ 

q  Clones & ghost tracks eliminated 
q  Ξb decays checked as a source 

n  Can interferences between Λ* resonances 
generate a peak in the J/ψp mass spectra? 
q  Implemented a decay amplitude analysis that 

incorporates both decay sequences:  
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Matrix Element 
n  Two interfering 

channels:     
Λb→J/ψΛ*,   
Λ*→K-p  
&  
Λb→Pc

+K-,                      
Pc

+→J/ψ p 
n  Use m(K-p) & 5 

decay ∠’s as fit 
parameters 
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n  Mass shapes: Breit-Wigner or Flatte´ 
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Models: extended & reduced 
n  Consider all Λ* states & all allowed L values 
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# parameters 64                  146 

Flatte´ 
 BW 
   ↓ 



Results without Pc states 
n  Use extended model, so all possible known Λ* 

amplitudes. mKp looks fine, but not mJ/ψp 

n  Additions of non-resonant, extra Λ*’s doesn’t help 
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Extended model with 1 Pc 

n  Try all JP up to 7/2± 
n  Best fit has JP =5/2±. Still not a good fit 
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Reduced model with 2 Pc’s 
n  Best fit has JP=(3/2-, 5/2+), also (3/2+, 5/2-) & 

(5/2+, 3/2-) are preferred  
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Angular distributions 
Good fits in the 
angular 
variables 
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In m(K-p) slices 
Pc’s cannot appear 
in first interval as 
they would be 
outside of the Dalitz 
plot boundary 
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m(J/ψ K-) 
n  Our fit explains 

m(J/ψ K-)  
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Significances 
n  Fit improves greatly, for 1 Pc Δ(-2lnL)=14.72, 

adding the 2nd Pc improves by 11.62, for 
adding both together Δ(-2lnL)=18.72 

n  Using toy simulations 1st state has 
significance of 9σ & 2nd state 12σ, including 
systematic uncertainties, coming from 
difference between extended & reduced 
model results. 
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Fit results 
Mass (MeV) Width 

(MeV) 
Fit fraction 

(%) 
4380±8±29 205±18±86 8.4±0.7±4.2 

4449.8±1.7±2.5 39±5±19 4.1±0.5±1.1 
Λ(1405) 15±1±6 
Λ(1520) 19±1±4 
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Systematic uncertainties 
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Cross-checks 
n  Many done, some listed here: 
n  Signal found using different selections by others 
n  Two independently coded fitters using different 

background subtractions (sFit & cFit) 
n  Split data shows consistency: 2011/2012, 

magnet up/down, Λb/Λb, Λb(pT low)/Λb(pT high) 
n  Extended model fits tried without Pc states, but 

two additional high mass Λ* resonances 
allowing masses & widths to vary, or 4 non-
resonant terms of J up to 3/2  
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Argand diagrams 

n  Amplitudes for 6 bins between +Γ & -Γ
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Data demands 2 states 
n  Interference between opposite parity states 

needed to explain Pc decay angle distribution 
n  Fit projections 
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Pentaquark models 
n  All models must explain JP of two states 
   not just one. They also should predict 
   properties of other states: masses, 
   widths, JP. Many models: Lets start 
   with tightly bound quarks ala′ Jaffe 

q  Two colored diquarks plus the anti-quark,  
L.Maiani, et. al, [arXiv:1507.04980], ibid [PRD20(1979) 748] 

q  Colored diquark + colored triquark, R. Lebed [arXiv:
1507.05867] 

q  Bag model, Jaffe; Strings, Rossi & Veneziano  
[Nucl. Phys. B123 (1977) 507] 
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Molecular models 
n  Molecular models, generally with 

meson exchange for binding  
n  Ala′ Törnqvist [Z. Phys. C61 (1994) 525] 
n  π exchange models usually predict        

only one state, mainly JP=1/2+, but could 
also include ρ exchange… 

n  Several authors consider Σc D(*) 

components (most of these are 
postdictions) 
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Rescattering 
n  These are all postdictions 
n  They construct non-BW amplitude that 

must mimic mass shape & phase variation 
of a BW 

n   eg. Λb→XY(Z)→J/ψpK-,   especially when 
m(XY)=m(Pc), hence the word “cusp” 

n  These models have so far not predicted the 
size of the rescattering amplitude 

n  Also difficult to predict two states… 
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Some History: The a1 
n  Is it possible for other processes to mimic 

resonant effects? 
n  Example: The Deck effect, a lesson in 

confusion: π+p→π+ρ0p, ρ0→π+π-, using a 3.65 
GeV π+ beam, G. Goldhaber et. al, PRL 12, 336 (1964) 
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“Kinematical” effect 
n  Clear enhancement near threshold. Is it a new 

resonance as suggested in original paper? 
n  Theorists, first Deck, suggest that the threshold 

enhancement can be due to off shell πp 
scattering R.T. Deck, PRL 13, 169 (1964) 
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Deck Effect 
n  Deck’s fit to data can provide  
   adequate explanation 
n  a1 then seen in different charge                     

states & different channels, e.g.                             
K+p→K+π+π-π0 p  

n  Many more sophisticated theory papers 
n  Controversy continued until observation of a1 

in τ-→π+π-π-ν decays, ~1977
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τ-→(πππ)-ν
Surmises: a full amplitude 
analysis may have proved 
the resonant nature of the 
a1 earlier. Important to 
see resonant states in 
several ways. There 
never was an 
unambiguous 
demonstration of the 
Deck effect. 
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Z(4430)+ tetraquark 
n  B0→ψ´π-K+, peak in m(ψ´π-), charged 

charmonium state must be exotic, not qq 
q  First observed by Belle M=4433±5 MeV, Γ=45 MeV 
q  Challenged by BaBar: explanation in terms of K*’s 
q  Belle reanalysis using full amplitude fit:                 

M=                MeV, Γ=200 MeV, 1+ preferred but 0- 
& 1- not excluded [arXiv:1306.4894] 

n  LHCb analysis also uses 
   full amplitude fit 

q  M=               MeV 
q  Γ=172 MeV [arXiv:1404.1903] 
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see also , LHCb-PAPER-2015-038 in preparation 



LHCb Amplitude analysis 

BNL August 2015

31 

n  Full 4D fit to both K*→K-π+ & Z→ψ′π- states 

n                                JP=1+ 

n                                                Unambiguously 



Breit-Wigner 
prediction 

Low 
Z mass 

High 
Z mass 

Is it a resonance? 
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data n  LHCb produced an 
Argand plot that shows 
a clear & large phase 
change 

n  There are also attempts 
at rescattering 
explanations  



Other Explanations 
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n  Molecule: 
L. Ma et.al, [arXiv:1404.3450] 
T. Barnes et.al, [arXiv:1409.6651 

n  Same scattering phase  
as Breit-Wigner 
n  Rescattering: 
P. Pakhov & T. Uglov 
[arXiv:1408:5295] 

n  Opposite phase 
n  Ruled out by LHCb 
Argand diagram 



Light Scalar 
Mesons 



B→J/ψπ+π- decays 
n   LHCb data arXiv:1402.6248                   arXiv:1404.5673    

n  Note large f0(980) in Bs & f0(500)≡σ in B0  
n  Why is f0(980) so narrow? The mass is very 

close to threshold for K+K-, coupled channel 
decay into ππ & KK was parameterized by Flatte′ 
BNL August 2015
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Thresholds & cusps 
n  In the context of a coupled 

channel model by Törnqvist, 
Bugg, arXiv: 0802.0934 has shown 
that the presence of a threshold 
can narrow down a resonance. 
The resonance is real, its 
structure is not important. 

FPCP Nagoya, May 2015

36 

n  Others have argued that the thresholds can 
mimic resonances. (See Swanson arXiv:
1409.3291). Even create a ~900 phase shift in 
Argand plane (Bugg arXiv:1105.5492) 



Dalitz plot 
No evidence 
for exotic 
structures 
in J/ψπ+ 
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Scalar meson quandry 
n  While 0- and 1- mesons follow a simple rule 

that adding an s-quark increases their mass, 
the 0+ mesons are difficult to understand in 
this context 

 

n  σ & f0(980) may be mixed by angle φ
n  Suggestions that scalars are tetraquarks 
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Isospin 1- state mass qq 0+ state mass 

1  ρ 776 MeV (uu+dd)√2 a0(980) 980 MeV 

0 ω 783 MeV (uu-dd)√2 f0(500) or σ 500 MeV 

1/2 K*(892) 892 MeV   (u or d) s κ(800) 800 MeV 

0 φ 1020 MeV ss f0(980)≡f0 980 MeV 

_ _ 

_ 

_ 

_ 

_ 
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First prediction: If σ is a tetraquark it will not be seen in Bs→J/ψσ   

qq model 

tetraquark model 

Γ(Bs
0 → J /ψ f ) =C FBs
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B0 decay diagrams 

b
W-

c

}
}c  J/}B0

b
W-

c

}
}c  J/}B0

f ,  0

b
W-

c

}
}c  J/}B0

b
W-

c

}
}c  J/}B0

uu, or dd

σ,   

(a) (b)

(c) (d)

d d
d f , 0

d
d
d

d
d

d
ss d

d

d

sinφ
√2

cosφ
√2

√2
1 σ, 1

BNL August 2015

40 

Γ(B0 → J /ψ f ) =C F
B0
f mJ /ψ

2( )
2
Vcd

2
ΦΖ2

qq model 

tetraquark model 

Z Z 

Z Z 



Rate ratios 
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Last ratio is independent of model, allows measurement of form factor ratio  
of  0.99−0.04+0.13



LHCb results 
n       <0.098 @ 90% cl, should be ½ for 

tetraquark, suggests the f0 & σ are qq states  
n  Possible deviations caused by tetraquark 

mixing, isospin violation, etc…   
n  If qq, mixing angle |φ| <17o at 90% cl  arXiv:

1404.5673  
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Conclusions 
n  LHCb has found two resonances decaying into J/ψp 

with pentaquark content of uudcc arXiv:1507.03414.  
n  Determination of their internal binding will require 

more study. They have spin 3/2 & 5/2 & opposite P 
n  Other exotic states have appeared containing cc 

quarks: the Z+(4430)→ψ´K-π+ appears to be a 
tetraquark with JP=1+. Is binding stronger for cc?  

n  Lattice QCD calculations providing masses would 
be most welcome 

n  The 0+ f0 & σ appear to be qq 
n  We look forward to further searches for exotics 
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Extended model with 2 Pc’s 
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Amplitude formalism 
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• The matrix element for the Λ↑∗  decay is: 

For the Pc: 

 ︎The amplitude for the Λ* decay sequence is given by 



47 

• R(m) are resonance parametrizations, generally are 
described by Breit-Wigner amplitude

Amplitude formalism II 
 ︎The amplitude for the Λ* decay sequence is given by 

For the Pc: 
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• ℋ are complex helicity couplings determined from the 
fit 

For the Pc 

Amplitude formalism III 
 ︎The amplitude for the Λ* decay sequence is given by 
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• Wigner D-matrix arguments are Euler angles 
corresponding to the fitted angles.  

Amplitude formalism IV 
 ︎Λ* decay sequence is given by 

For the Pc 



αµ & θp are rotation angles needed to align the final 
state helicity axes of the µ & p, as the initial helicity  
frames are different for the two decay chains 

n  Helicity couplings ℋ ⇒ LS amplitudes B via: 
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 Convenient way to enforce parity conservation in the 
strong decays via: PA

 

• They are summed as: 
Amplitude formalism V 


